

Vineyard Leaf Image Analysis for Pest and Disease Detection using Explainable Federated Learning VIPA-DELF

Faculty of Information Technology and Electrical Engineering Department of Information Security and Communication Technology Sarang Shaikh

Team member - VIPA-DELF

PhD Researcher

sarang.shaikh@ntnu.no

Funded by the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Executive Agency. Neither the European Union nor the European Research Executive Agency can be held responsible for them.

VIPA-DELF Team @ NTNU

The team involved in VIPA-DELF is part of Multidisciplinary Research group on Privacy and data protection (**MR PET**)¹

¹https://www.ntnu.edu/iik/mrpet#/view/about **Presentation of the OC1 Results**

01 VIPA-DELF Team @ NTNU

Sule Yildirim Yayilgan (Professor)	Mohamed Abomhara (Researcher)	(Sarang Shaikh (PhD Researcher)	
Anne Hilde Ruen Nymoen (Senior Financial Advisor)	Noor E Mobeen (Masters Student)	Γ	Livinus Obiora Nweke (Associate Professor)	

VIPA-DELF Goals & Objectives

02

VIPA-DELF Goals & Objectives

VIPA-DELF employed cutting-edge technical approach that combines computer vision, deep learning, and federated learning while emphasizing transparency and interpretability using explainable AI for vineyard leaf image analysis.

VIPA-DELF Timeline

Presentation of the OC1 Results

02.10.2024

03 VIPA-DELF Timeline

	PROGRESS	MAR	APR	MAY	ИUL	JUL
S	Identifying existing public datasets					
-YSI	Defining technical requirements					
NA	Identifying hardware requirements					
<	Setting up the requirements ready to do implementation					
	Training SOTA image-classification models					
EMENTA'	Setting up the federated learning approach with best-performing model					
	Integrating XAI workflow into to explain the predictions using real-time dashboard					
	Developing a web/mobile application for testing					
Z	Testing on public datasets					
ATIO	Testing and validation using real-time data from vineyards					
ALIC	Optimizing the proposed approach based on real-time testing			+		
> ,					1	
ē	Presenting the work at conferences					+
ç	Publishing the work in journals					
EMIN	Diseeminating the work using social media platforms and seminars at the university					

VIPA-DELF Datasets

Presentation of the OC1 Results

02.10.2024

Presentation of the OC1 Results

VIPA-DELF Results

Presentation of the OC1 Results

02.10.2024

VIPA-DELF Results

Image Analysis Models results without federated learning

Accuracy comparison of all SOTA models against all the three datasets without Federated Learning

Confusion Matrix (Private Dataset)

Confusion Matrix (PV – Apple Dataset)

Presentation of the OC1 Results

VIPA-DELF Results

Image Analysis Models results with federated learning

Epochs	Clients	Round
5	5	2
5	10	2
5	5	5
5	10	5
5	5	10
10	5	5
10	5	10
10	10	10

Parameter configurations for VIPA-DELF FL Approa

Comparison of fine-grained model; PrivateDataset using FL approach; (E=Epochs; C=Clients; R=Rounds)

Confusion Matrix (PrivateDataset; Federated Learning; Epochs:5; Clients:5; Rounds:5)

Dataset	Orignal Image	LIME	Grad-CAM
ESCA			
APPLE			
GRAPES			

KP#1

Early Pest and Disease Detection Rate for vineyard leaves

• Proposed: Achieve a detection rate of more than 80% for diseases in vineyard leaves using the proposed technical approach.

•Outcome: The results shown on slide "" supports the achievement of this KPI.

KPI#2

Data Privacy Compliance

• Proposed: Ensure 100% compliance with privacy and data protection regulations, such as GDPR, by safeguarding sensitive vineyard data using the proposed FL method.

•Outcome: We achieved this KPI in two ways. 1) Data safeguard: Signed the "Non-Disclosure Agreement (NDA)" with the dataset providers from Spain. 2) Implemented FL approach, to maintain the privacy of sensitive data collected from Spanish and Norwegian vineyards during the model training and testing.

KPI#3

Explainability Score

• Proposed: Achieve an explainability score of at least 85% in AI decision-making for pest and disease detection in vineyard leaves using proposed XAI method.

•Outcome: Since, the achievement of this KPI is more kind of qualitative assessment; we achieved this one by sharing our work in the research community by publishing one conference paper.

KPI#4

Publishing research papers

• Proposed: Disseminating the work done in the proposed sub-project by publishing/submitting at least 1 journal and 1 conference paper in the relevant venues between Month 5 and 6 and disseminating the results to vineyard owners and relevant stakeholders in Europe.

•Outcome: 1 conference paper presented, published and 1 journal paper to be started.

VIPA-DELF Dissemination

Name of event

Thank you for your attention! Do you have any questions?

Faculty of Information Technology and Electrical Engineering Department of Information Security and Communication Technology Sarang Shaikh Team member - VIPA-DELF PhD Researcher sarang.shaikh@ntnu.no

Funded by the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Executive Agency. Neither the European Union nor the European Research Executive Agency can be held responsible for them.