

A Holistic Approach to Sustainable, Digital **EU** Agriculture, Forestry, Livestock and Rural Development based on Reconfigurable Aerial Enablers and Edge Artificial Intelligence-on-Demand Systems

CHAMELEON D.6.1 Pilot campaign plan open call on boarding and evaluation methodology

Work package	WP6: CHAMELEON Applicability and piloting
Task	Task 6.1: Pilot campaign plan open call on boarding and evaluation methodology
Authors	López Casillas, Alberto – Diputación de Ávila, George Aumayr – JOAFG, Clemens Liehr, JOAFG; Rocío Ballesteros – UCLM.
Dissemination level	Public (PU)
Status	Final
Due Date	30/07/2023
Document date	11/08/2023
Version number	1.4
* * * * * Funded by the European Union	Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Executive Agency. Neither the European Union nor the European Research Executive Agency can be held responsible for them.

Revisio	n and histo	ry chart	
Versio n	Date	Main author	Summary of changes
0.1	20/03/2023	Alberto López Casillas	Draft outline
0.2	23/03/2023	Alberto López Casillas	Changes provided by contributors
0.3	04/04/2023	Alberto López Casillas	Inclusion of contributions of bundle developers for Pilot Case Uses.
1.0	03/05/2023	Alberto López Casillas	Proposal for partners meeting contributions
1.1	10/07/2023	Alberto López Casillas	Pre-final document for review
1.2	19/07/2023	Laura Piedelobo	Pre-final document for review
1.2	20/07/2023	LAMMC	Pre-final document for review
1.3	21/07/2023	Alberto López Casillas	Final Document
1.4	11/08/2023	Georg Aumayr	Compilation of final document with strategy elements of WP6

Table of contents, select style H1 no ToC

1	Abl	breviation list	4
2	2 GENERAL GOAL GENERAL GOAL OF THE TASK 3 PILOT PLAN ACTIVITIES 3.1 Overview of Pilots and Specialties 3.1.1 Greece 3.1.2 Spain 3.1.3 Austria 3.2 Planning procedures and meetings 3.3 Timeframe for pilot actions 3.4 Pilot strategy 3.4 Pilot strategy 3.4 Resources to be committed to each pilot 3.5 LIST OF PILOT use cases 3.6 Bundles for pilot 3.6.1 Austrian Pilot 3.6.2 Greek Pilot 3.6.3 Spanish Pilot 3.7 PILOT PLAN ACTIVITIES and development roadmap 1.1.1 AUSTRIA PILOT CASES 1.1.1.1 FOREST 1.1.2 VINEYARD 1.1.3 SPANISH PILOT CASES 1.1.3 SPANISH PILOT CASES 1.1.3 SPANISH PILOT CASES 1.1.3 LINESTOCK 1.1.3 VINEYARD 4 EVALUATION METHODOLOGY 3 A.1 4.1		5
	GEN	NERAL GOAL OF THE TASK	5
3	PIL	OT PLAN ACTIVITIES	6
		3.1.2 Spain	8
		3.1.3 Austria	10
	3.2	Planning procedures and meetings	12
	3.3	Timeframe for pilot actions	14
	3.4	Pilot strategy	
		3.4.1 Resources to be committed to each pilot	15
	3.5	LIST OF PILOT use cases	19
	3.6	Bundles for pilot	23
		3.6.1 Austrian Pilot	23
		3.6.2 Greek Pilot	23
		3.6.3 Spanish Pilot	23
	3.7	PILOT PLAN ACTIVITIES and development roadmap	24
		1.1.1 AUSTRIA PILOT CASES	24
		1.1.1.1 FOREST	24
		1.1.1.2 VINEYARD	25
		1.1.2 GREECE PILOT CASES	26
		1.1.2.1 LIVESTOCK	26
		1.1.2.2 PASTURE	26
		1.1.3 SPANISH PILOT CASES	27
			-
4	EV	ALUATION METHODOLOGY	30
	4.1	Background for methodology	
	4.2	Evaluation branches	32
		4.2.1 Technical	32
		4.2.2 Operational (T6.3)	
		4.2.3 Societal/psychological (T6.4)	

5	References	33
	4.3 Evaluation "Development Monitoring"	33

1 Abbreviation list							
Abbrevation	Full Text						
ТАМ	Technology Acceptance Model						
STS	Socio-technical system						
ICT	Information and communication technology						
UAV	Unmaned Aireal Vehicle						
VLOS	Visual Line of Sight						
UC	Use Case						
SUS	System Usability Scale						
USE scale	Ease of Use and Ease of Learning Scale						
TC Scale	Technology Acceptance and Technology Competence Scale						
TRL	Technology readiness level						

2 GENERAL GOAL

GENERAL GOAL OF THE TASK

The task goal is the definition of high-level strategy, planning and methodology for the Demos proposed on the CHAMELEON Demos.

There has been a selection and agreement on the bundles to be included on the Demo campaign, according to WP4 and expectations for the project.

It has been defined the framework to plan pilot campaign and defined the guidelines to provide the needs for the Pilot realization.

The high-level strategy for Demos consecution is based on the split of Use Cases into activities for being conducted according to its own time and considerations under the general framework of the Use Cases.

For this purpose, the action flow is based on the bundles collected in deliverable 2.1. per pilot case. Each bundle will be considered as an activity with tasks and subtasks to be conducted, definition of features of the tasks, identification of stakeholders involved on the consecution of the tasks and evaluation.

The information collected per bundle has been transformed in a Gantt diagram with a document to evaluate the advance on its development, in order to define a planning framework for evaluating the advances on the development of Use Cases according to a general methodology based on the analysis of each activity.

3 PILOT PLAN ACTIVITIES

Task 6.1 is dedicated to set up a strategy for the pilot execution and evaluation of CHAMELEON. Therefor it is necessary to be aware of the pilot specialties and aims, as they are dealing with different issues. The general AIM OF THE PILOTS is to evaluate the perceived usefulness of the CHAMELEON bundles and to identify the improvement potential. By this, the pilots work in iterative cycles. The term "pilot" is dedicated to the execution of a close to real life testing scenario for the dedicated bundle and the accompanying evaluation. The results of each pilot will feed the developers and will be tested in the next iteration. In total, there are 3 iterations envisaged: 1. Primary set up and requirements check 2. Testing of first improvement 3. Final Evaluation of the project developments.

In table 1, an overview of the pilot sites is given with the responsible entities and the main contacts for the pilots with a status at the 30.07.2023.

Pilot site	Responsi ble Entity	Main Contact	 Iterat ion plann ed 	2. Iterat ion plann ed	3. Iterat ion plann ed
Greece	MAICh	Chariton Kalaitzidis <u>chariton@maich.gr</u>	14.04.2024 - 10.07.2024	14.10.2024 - 10.11.2024	14.04.2025 - 10.07.2025
Spain	AVILA	Alberto Lopez - alopez@diputacionavila .es	01.03.2024 - 14.04.2024	01.08.2024 - 30.09.2024	01.03.2025 - 14.04.2025
Austria Forest	JOAFG	<u>Geogr.aumayr@johanni</u> <u>ter.at</u>	01.10.2023- 01.12.2023	01.01.2024- 01.03.2024	01.01.2025- 01.03.2025
Austria Vineya rd	JOAFG	<u>Clemens.liehr@johanni</u> <u>ter.at</u>	10.09.2023- 15.12.2023	10.10.2024- 15.02.2025	10.05.2025- 15.07.2025

Table 1 Pilot overview

3.1 Overview of Pilots and Specialties

Each pilot has its own bundles and aims as well as challenges. In each country, the areas are differing a lot and the environmental requirements are different. With CHAMELEON T6.1 an overall strategy has to be found to make a common framework for 3 very different pilots.

3.1.1 Greece

Expectations

The Greek pilot is predominantly about the topic of monitoring of livestock.

Following features are the main core of interest:

- Remote Scanning: Monitor the herd from an optimal distance, ensuring minimal stress while providing clear imaging.
- Movement Modeling: Track irregularities in herd movement, identifying potential health issues through behavioural analysis.
- Thermal Health Monitoring: Use of Thermal Cameras to ascertain health status by measuring body temperature and detecting posture anomalies.
- Alert System: Includes an alert mechanism for the herd owner, signaling health issues or straying individuals, using data from the movement model and thermal readings.
- Position Monitoring: Features an automated mapping system for swift, accurate location determination, particularly valuable in emergency situations.

Working Environment

The pilot operates in a small valley (at the highest heights of the mountainous Sfakia region) that operates as the main base camp for most herders (including the GR Pilot case herd owner). This area is notable for its isolated and difficult terrain, as well as its typical shrub-filled vegetation, which is common on the island. The valley is surrounded by steep and empty mountain slopes, featuring ancient trails known only to the local goatherders. The region often experiences changing wind patterns.

User of Chameleon

The local goatherds and shepherds in the pilot area will utilize the CHAMELEON system. They generally possess roughly a high school education and exhibit the typical traits and behavior found among the rural, mountainous populations of Crete. It is important to present technical and complex information in a simple and easily understandable manner for them. Also, the provided system needs to be easy-to-operate and some instructions may be provided in Greek.

Complications expected

• Variable wind conditions, which the drone must be able to handle and adjust to, due to the steep rises in elevation in parts of the Pilot Area.

• Range & autonomy: Since the extend of the pilot region from the center of the valley reaches upwards to 2000 meters, different parameters for distance, elevation and weather conditions need to be considered.

• Flying Altitude: If too high (>80m), identification becomes hard. If too low (<30m), animals get scared of the noise. Ideal altitude 2 50-60m.

At least in the Pilot Area, there doesn't seem to be much need for monitoring flora at highaltitude grazing areas or fertilization for seasonal animal feeding (partly because of the hard lines drawn between the grazing ground borders among the pastural populations of the mountains). Some interest was expressed for its application on fertilizing the wintering pastures.

3.1.2 Spain

Expectations

The CHAMELEON system must be able to feature the following:

• Identification of wildfire high risk areas. Allow the identification of wildfire high risk areas associated to the vegetation state. Introduction of risk factors like vegetation continuity and fuel models.

• Identification of wildfire high risk areas. Allow the identification of the zones within the urban-forest interface in order to prioritize the actions to be conducted on those areas in terms of wildfire prevention and self-protection. It would be interesting to offer information for firefighters (evacuation paths, extinction means, best places to act...) to improve the actions in emergencies.

• Identification of wildfire starting points. Accelerate the identification of wildfire starting points to improve the chances of controlling it. Include first estimations of wildfire evolution from the starting point, to offer information for extinction.

• Remote Scanning: Monitor the herd from an optimal distance, ensuring minimal stress while providing clear imaging.

• Movement Modeling: Track irregularities in herd movement, identifying potential health issues through behavioral analysis. Identify weird movements that could mean wild animals attacks, to protect herd.

• Thermal Health Monitoring: Use of Thermal Cameras to ascertain health status by measuring body temperature and detecting posture anomalies.

• Alert System: Includes an alert mechanism for the herd owner, signaling health issues or straying individuals, using data from the movement model and thermal readings.

• Position Monitoring: Features an automated mapping system for swift, accurate location determination, particularly valuable in emergency situations.

• Analysis of crop development. Monitor the crop development to identify potential deviations in the expected results to improve the management.

• Identification of water stress. Anticipate potential damages due to droughts in crops, to improve the management decision process.

• Identify soil catalogue. Identify particularities in soil in small lands to improve management decision process. Identification of particularities of soil that can be remarkable for crops.

Working environment

For Forest cases, the environments are two. On one hand, forest in mountain areas where continuity of vegetation is real and there are some problems for access in some places. On the other hand, the urban-forest inter-phase is located close to urban areas so the environment is adequate for technical requirements.

User of Chameleon

The forest Pilot cases have two main target groups of users. On one hand, the responsible of prevention and extinction of wildfires, who usually have enough technical training to use results and products. On the other hand, municipalities responsible who probably will not have the technical capabilities to use technical and complex information.

The Livestock pilot case system would be used by farmers and shepherds, who will probably not have the technical capabilities to use technical and complex information.

The vineyard pilot case system would have two main users. On one hand the technicians in charge of providing management services for farmers. This group has enough technical capabilities to use it properly. On the other hand, the farmers, that could use it to obtain information for improving the management. This group has probably not enough technical capabilities to use technical and complex information

Complications expected

• Size of the field where herd lives. Cows are on the field, in freedom, so it is difficult to identify paths for them. It can be used those moments where cattle are managed for sanitary reasons, because there is a concentration on closed areas.

- Licenses and permissions to flight drones.
- Interruption of wildfire extinction activities is not possible.

3.1.3 Austria

Expectations

Forest

• Crop and vegetation monitoring. To receive local funding, it is necessary to count trees and species on a regular base.

- Damage monitoring. After a heavy weather situation, the forest has to be checked for debris and damages to trees that could cause danger to people living the area.
- Healthstatus and pest detection. To ensure a healthy forest, it is necessary to have an early detection system to identify pests in the forest and to act against them at an early stage. CHAMELEON is expected to help in this.
- Monitoring of humidity of soil and plants for assessing risk of fire. It is expected that CHAMELEON provides help in this area to support prevention measurements e.g. prohibition of smoking in the forest during drought.

Vineyard

- Damage monitoring. After heavy storms and hail, the vineyard has to be checked for damage.
- Due to droughts and heatwaves but also after heavy rain falls or longer periods of moist weather conditions, the humidity level of the soil and plants has to be checked to identify needed artificial watering.

Working Environment

Forest

For the forest, the area is steep and at the bottom f the valley, a natural river is flowing to the next settlement. During the last 30 years more and more people moved to the valley from the nearby City of Linz, the regional capital. The area has no flight restrictions and is narrowly planted. In the 70s and 80s and 90s the forest was a pure needle wood forest. This has changed since 2000.

Vineyard

The Vineyard is a professional vineyard of a local winemaker. It is at a hill side and completely private property. Nearby are no special flight zones. Drones can work without permissions.

Users of Chameleon

Forest

Users of the CHAMELEON System are going to be local people that normally have job for their living and are working as part-time farmers and Forestiers. They have different education backgrounds. For the envisaged area, the main forester is a stone mason, freshly married and his family is supporting him in the forestation. The forest is within this family for centuries.

Vineyard

Users of the CHAMELEON system are absolvents from the University of Agriculture and Forestry of Vienna and hold an Engineering Diploma for Agriculture. They are working for some generations already in this area as vinters and have expanded to an international market in the latest years. They are very well known for the quality and special taste of their sorts and species. They have already experience with data collection of their soil and a system installed.

Complications expected

Due to the hill structure, it could happen that there need to be several serial flights to cover the area as VLOS flight is mandatory.

3.2 Planning procedures and meetings

For the pilot planning, overall structures for each pilot have been described and documented as UML and process model.

All pilots follow the same procedure over time within their specialities. The methodology is the unifying element, not the content.

Each pilot will provide initial use cases and a design for the envisaged experiments. Within the first pilot action, under worst condition, a table top exercise for planning the next steps will be done. Therefore, mock ups and wireframes need to be provided by the technical partners together with the envisaged operation specifications.

The 2nd pilot action will then focus on a hands on aspect of the bundles and the perceived usefulness within the pilot setting.

The 3rd and final pilot action is the test of the full scale prototype of CHAMELEON under real life conditions.

Whereas the time between the 1st and the 2nd pilot action is dedicated to development, the time between 2nd and 3rd pilot is for refining the CHAMELEON prototype.

To keep an overview and everyone on the same page, regular meetings (1st Wednesday every month) are organised by JOAFG to bring up current issues of WP6 and the pilot planning. This call is dedicated to problem solving and pilot coordination.

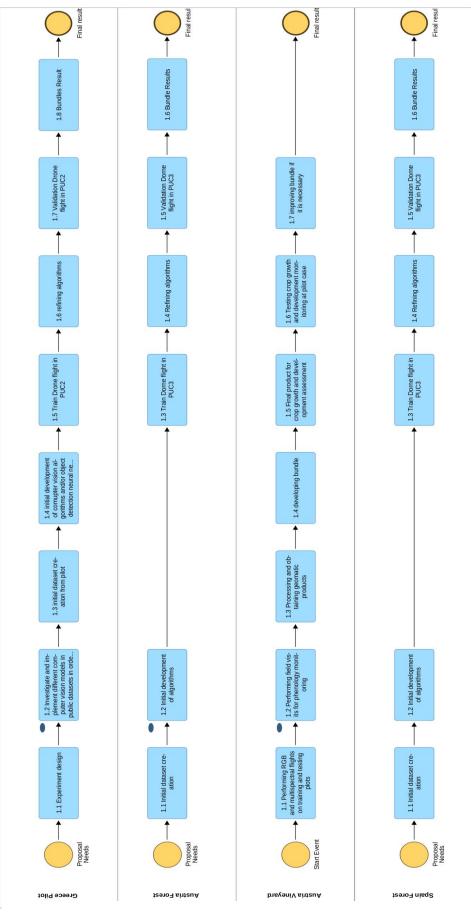


Figure 1 Pilot Overview Process steps

3.3 Timeframe for pilot actions

As each of the pilots has a different field of action, the execution as to follow the needs. It is a challenge to move the needed devices and system components to each pilot site and to have them done within a dedicated timeframe, that is partly overlapping. Following the prerequisites of each pilot a GANTT Chart is possible to solve the logistics as well as the availability of demonstrators of the hardware components. With a first draft of a GANTT chart that is following the windows of opportunity at the pilot sites, a detailed planning should be possible for the pilot sites as well as for the development roadmaps.

Windows for F	s of Opportunity Pilot actions			2	023				2024						2025																
		7	8	9	9 10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
Greece	Crete																														
Spain	Avila																														
Austria	UpperAustria																														
Austria	LowerAustria																														

Figure 2 GANTT Windows of Opportunity for Pilots

Figure 2 shows the overview of the different pilot sites with their windows of opportunity to test with the CHAMELEON system with their use cases.

3.4 Pilot strategy

3.4.1 Resources to be committed to each pilot

Role model for pilots

To ensure that all pilots are running the same structure, predefined roles have been defined.

For each pilot site, all roles are defined in the document "Pilot Role model and contacts.xlsx" on the shared space of the CHAMELEON project. Table 2 explains the type of roles, that are in principle developed from a crisis response staff.

	Туре		Description
			This is the main contact
			person for the pilot in a
			region.
			The responsibility for the
			pilot is with this person.
			Tasks are organisation
			(through team), escalation
			point for questions,
CHAMELEON pilot leader		EXCON	descision maker for pilot
			S6 is taking care about the
			technical situation onsite
			of the pilot and the check
			of all technologies for the
			pilot, if they are working
			properly. Additionally, this
			position is responsible for
			the communication
			streams between pilot
			elements (S1-S6, team
			onsite etc.) This position
			has to be covered with
			technicians that can onsite
			repair, manage and set up
			all technical infrastructure
			that is needed and is for
			other technical solution
			provider the main contact
CHAMELEON pilot support S6 (t	ech)	Technical partner	for the pilot
			The evaluation support is
			the main contact for all
			evaluation questions for
			the aim of the
			pilot. This position is
			responsible to provide
CHAMELEON pilot support (eva	1)	Evaluation team	questionnaires, execute

I		interviews and document
		the pilot. They report to S3
		The execution/operation
		position is monitoring the
		pilot if all procedures are
		running and when a new
		action within the pilot has
		to be triggered. S3 is
		responsible for the pilot
		management during the
		execution, coordination
		with other teams,
		permissions collection,
		warning and alerts and
		reports to the pilot leader.
		All procedures for the pilot
		execution are coordinated
CHAMELEON pilot support S3 (execution org.)	EXCON	at this position.
		The drone pilots will steer
		the drones according to
		the mission briefing by the
		pilot leader. They are
		responsible for the
		technical readiness of the
		drone and the sensors on
		the drone and the data
		connectivity from drone to
		the target system. The
		drone pilots will not
		operate as a single person
		but as a unit onsite. Drone
		pilots are subordinate to
CHAMELEON pilot DRONE PILOTS		the pilot leader.
		S1 is taking care of
		staff/personnel necessary
		for the pilot execution. All
		participants register at S1.
		This position has the
		contact information of all
		participants. It is
		responsible that all needed
		people are with the pilot
		and are available at the
		right time at the right
CHAMELEON pilot support S1 (staff org.)	EXCON	place.

1	1	S2 is collecting all
		information about the
		current situation at the
		pilot area. This position
		will work and a map of all
		units at the field, potential
		damages and problems,
		areas of action and
		visualisation of units and
		troops in the field. This
		position reports to the
		pilot leader. With this
		position, the pilot diary is
		running and
		documentation of the pilot
		procedures have to be
CHAMELEON pilot support S2 (current situ ion org.)	EXCON	done
	LACON	S4 can organize support
		units (power supply, fuel
		etc.), takes care about
		drinks and food for the
		pilot, Supply material for
		maintenance, safety and
		security at the pilot site,
CHAMELEON pilot support S4 (logistics, allowances)	EXCON	support in accomodation.
		S5 is the dissemination
		cell. At this position, all
		material for dissemination
		is collected. Directly from
		there, social media as well
		as press contacts are
		organized. If there is
		interest from media to be
		onsite at the pilot, S5 is
		coordinating this action.
		This position reports to
CHAMELEON pilot support S5 (Disseminaion, press)	EXCON	pilot leader and S2/S3/S4

Table 2 Pilot Roles

Materials

For the CHAMELEON pilot, several materials are necessary to secure the execution of the pilots.

Personell (S1)

For execution of the pilots, an organisations and preparation team is necessary, that will also handle the pilot onsite. For each pilot, the necessary roles are defined and need to be staffed. Furthermore, the operative element, the user, needs to be briefed and supported. This can be

done by the pilot leader. Next to the defined roles, in detail, technical partners will have to participate at the pilot sites to cover necessary actions from system side and prepare everything to run smoothly during the execution phase. Each pilot is estimated to be handled by at least 6 people and representatives of the users.

IT Equipment and Software (S6)

The IT Equipment needs to be defined by the technical partners. Also all power supplies, connectivity (wifi, LTE/5G, LAN) and environmental robustness needs to be known and available. A full equipment list needs to be provided for each bundle of CHAMELEON to ensure the function during the pilot actions. All of this equipment needs to be checked onsite before the pilot actions start.

Same goes for the software. Everything needs to be pre-checked onsite for full functionality. Especially for the perceived usefulness, all waiting times, data transfer times etc. need to be known and part of the user briefing to ensure that the CHAMELEON in its functionality is tested and not latencies of bad connections.

Logistics (S4)

As the pilot sites are not in well habituated areas, logistics are a core action of the pilot actions. Next to the idea of running costs of the systems, it is mandatory that all necessary supplies are available onsite to make the CHAMELEON system running. For the team, there must be sufficient supplies and transportation capacity. For damages and system failures, there need to be backups in reasonable reach. For all mobile elements, mobility needs to be secured. All allowances need to be pre-checked and available at the pilot action day(s). Pilot logistics starts from the nearest airport to the pilot site. For providing necessary material to the target airport, the relevant partner of CHAMELEON is responsible.

Drone Pilot register

Each pilot site needs to run a drone pilot register to ensure that all people who are handling a drone are allowed by national and EU law to do so. Therefor the drone training according to EASA guidelines for drone pilots needs to be certified and available. Also, each drone needs to be registered and has to have a proper insurance. Within the drone pilot register, the all this information is collected.

Parnter Nar	ime Surname	Registration	Acting under Droneprovider Reg. Nr.		Pilot for AT	Pilot for GR	Pilot for ES
-------------	-------------	--------------	---	--	--------------------	--------------------	--------------------

					drone (Type)			
JOAFG	Georg	Aumayr	XXXXXXX	XXXXXX	DJI MAVIC 3	Yes	Yes	Yes
JOAFG	Birgit	Schilcher	үүүүүү	XXXXXX	DJI MAVIC 3	Yes	No	No

Table 3 Drone pilot register Example filled in

The document is available at the CHAMELEON shared space as "Drone Pilot Register.xlsx"

Contact details for pilot regions

Greece:

Chariton Kalaitzidis chariton@maich.gr

Spain:

Alberto Lopez - alopez@diputacionavila.es

Austria:

Georg Aumayr <u>Georg.aumayr@johanniter.at</u> Clemens Liehr <u>Clemens.liehr@johanniter.at</u>

3.5 LIST OF PILOT use cases

The pilots, the cases and the Business Use Case of the Pilot Use to be developed in Chameleon, according to the conceptualisation and use cases definition of Deliverable 2.1 are in table 1. The CHAMELEON solution will be demonstrated and validated under three relevant pilots: i) Vienna-Austria, ii) Crete-Greece, and iii) Avila-Spain. The pilot use cases in Austria identified by stakeholders are Forest and Vineyard, Greece – Livestock and Pasture, Spain – Forest, Livestock, and Vineyard. Each pilot use cases have a few business use cases.

Table 1: Pilot, pilot cases and Business Use Case

Version 1.3

Pilot	Pilot use cases	Business Use Case
		Crop and vegetation monitoring
	Ferent	Extreme weather event and drought
	Forest	Health and pests
Vienna – Austria		Wildfire
		Crop and vegetation monitoring
	Vineyard	Extreme weather event and drought
		Health and pests
	Livestock	Monitoring livestock
Crete - Greece	Pasture	Crop and vegetation monitoring
		Crop and vegetation monitoring
	Forest	Health and pests
		Wildfire
	Livestock	Monitoring livestock
Avila - Spain		Crop and vegetation monitoring
		Extreme weather event and drought
	Vineyard	Health and pests
		Soil

The Business Use Cases have a relation with the bundles of each pilot case. These bundles are actions to be conducted on each Pilot with a specific purpose and indicator. The list of bundles, related to each Business Use Case is in table 2. The Austria pilot covers five bundles, Greece – has two bundles, and Spain – has five bundles.

Table 2: Pilot, pilot cases and Business Use Case

Pilot use cases	Business Use Case	Bundle
	Crop and vegetation monitoring	Vegetation monitoring and census: tree census, species, treetop colour
	Extreme weather event and drought	Large woody debris on rivers
Vienna – Austria Forest	Health and pests	Health status of vegetation (mainly bark beetle), game browsing, ground cover and fungal growth
	Wildfire	Monitoring humidity of soil and plants for assessing risk of fire

	Crop and vegetation monitoring	Crop growth and development monitoring
	Extreme weather event and drought	Vineyard water stress due to drought
Crete – Greece Livestock	Monitoring livestock	Livestock management (herd) and monitoring (individual animal)
LIVESLOCK		Animals' health
	Crop and vegetation monitoring	Monitoring flora at high-altitude grazing areas for seasonal animal feeding
	Crop and vegetation monitoring	Continuity of vegetation
Ávila – Spain Forest	Wildfire	Characterization of urban-forest interface. Access for firefighters, evacuation and biomass
		Hot spot identification at the beginning of wildfire
Ávila – Spain Livestock	Monitoring livestock	Collecting information about health status and stress (wild animals)
		Lameness detection in cows
	Crop and vegetation monitoring	Crop growth and development monitoring
Vinevard	Extreme weather event and drought	Vineyard water stress due to drought
	Soil	Soil zonification

After prioritizing the Agriculture, Livestock and Forestry bundles, some of the important bundles were selected and prepared to submit for the Open calls, which are planned during the implementation stage CHAMELEON project. The list of selected bundles for Open calls provided in Table 3.

Pilot use cases	Business Use Case	Bundle
Vienna – Austria	Extreme weather	Woody debris on forest slopes
Forest	event and drought	Load of snow on the trees (depth)
Crete – Greece Pasture	Crop and vegetation monitoring	Application of fertilizers in inaccessible grazing areas of high altitude
Ávila – Spain Livestock	Monitoring livestock	Monitoring livestock/ individual animal/ virtual fences

Third parties officially will be able to participate and submit applications in Open Calls, based on their expertise and experience.

3.6 Bundles for pilot

3.6.1 Austrian Pilot

Austria (USAL)	Forest	Crop and vegetation monitoring	Vegetation monitoring and census: tree census, species, treetop colour
Austria (USAL)	Forest	Extrem weather event and drought	Large woody debris on rivers
Austria (LAMMC)	Forest	Health and pests	Health status of vegetation (mainly bark beetle), game browising, ground cover, and and fungal growth
Austria (USAL)	Forest	Wildfire	Monitoring humidity of soil and plants for assessing risk of fire
Austria (UCLM)	Vineyard	Crop and vegetation monitoring	monitoring (Vineyard damage evaluation due to heavy wind storms; Vineyard damage evaluation due to
Austria (UCLM)	Vineyard	Extrem weather event and drought	Vineyard water stress due to drought.

3.6.2 Greek Pilot

Greece (AIDEAS)	Livestock	Monitoring livestock	Livestock management (herd) and monitoring (individual animal)
Greece (AiDEAS)	Livestock	Monitoring livestock	Animals health
Greece (UCLM)	Pasture	Crop and vegetation monitoring	Monitoring flora at high-altitude grazing areas for seasonal animal feeding

3.6.3 Spanish Pilot

Spain (USAL)	Forest	Crop and vegetation monitoring	Continuity of vegetation
Spain (USAL)	Forest	Wildfire	Characterization of urban-forest interface. Access for firefighters, evacuation, and biomass
Spain (USAL)	Forest	Wildfire	Hot spot identification at the beginning of wildfire
Spain (USAL)	Livestock	Monitoring livestock	Collecting information about health status and stress (wild animals)
Spain (AiDEAS)	Livestock	Monitoring livestock	Lameness detection in Cows
Spain (UCLM)	Vineyard	Crop and vegetation monitoring	Crop growth and development monitoring.
Spain (UCLM)	Vineyard	Extrem weather event and drought	Vineyard water stress due to drought.
Spain (UCLM)	Vineyard	Soil	Soil zonification

3.7 PILOT PLAN ACTIVITIES and development roadmap

The pilot plan contains different bundles as actions to be conducted on each Pilot. Bundles have been split into tasks and subtasks to plan the development of the activities.

Each bundle of the Pilot Case has its own a number and title (e.g.: 1. Vegetation monitoring and census) and each task / subtask has a chronological code for each bundle (e.g: 1.1 Identification of location; 1.2 Vegetation data collection). The distribution of tasks, provided in a Gantt diagram, will allow responsible following the advances of each bundles' associated work.

1.1.1 AUSTRIA PILOT CASES

1.1.1.1 FOREST

BUNDLE	1. V shap	-	ation	mor	nitori	ng ai	nd ce	nsus	: tree	e cen	sus,	tree	traits	(coc	ordin	ates,	tree	heig	ht an	d cro	own	diam	ater), for	est ty	/pe, t	treet	ор сс	olour	. anc
			20)22								20	23											20)24					
	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
TASK/SUBTASK	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1.1 Initial dataset creation	Dat	ase	t US	AL_	Fore	est, I	HRL	Fore	est C	LMS	5																			
1.2 Initial development of algorithms, using existing dataset																														
1.3 (Train) Drone flight in PUC3																														
1.4 Refining algorithms																														
1.5 (Validation) Drone flight in PUC3																														
1.6 Bundle results																														

BUNDLE	3. La	arge	debr	is on	slop	is on	rivers	5																						
			20)22								20	23											20)24					
	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
TASK/SUBTASK	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
3.1 Initial development of																														
computer vision algorithms and/or																														
object detection neural networks,																														
using existing dataset	Dat	ase	t US	AL_	Juca	ar_R	iver																							
3.2 (Train) Drone flight in PUC3																														
3.3 Refining algorithms																														
3.4 (Validation) Drone flight in																														
PUC3																														
3.5 Bundle results																														

BUNDLE	6. H	ealti	h sta	tus o	fvege	etatio	on, g	ame	brov	ving,	grou	nd co	over	and f	funga	al gro	wth													
			20)22								20	23											20)24					
	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
TASK/SUBTASK	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
6.1 Initial dataset creation	Dat	ase	t LA	MM	C_F	ores	st, D	ubra	ava	Fore	est H	S																		
6.2 Initial development of algorithms, using existing dataset																														
6.3 (Train) Drone flight in PUC3																														
6.4 Refining algorithms																														
6.5 (Validation) Drone flight in PUC3																														\square
6.6 Bundle results																														

BUNDLE	7. №	1onit	oring	g hun	nidity	of s	oil ar	nd pl	ants	for a	ssess	ing ri	isk of	f fire																
			20)22								20	23											20)24					
	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
TASK/SUBTASK	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
7.1 Initial dataset creation	Dat	ase	t US	AL_	Tieta	ar_\	/alle	у <i>,</i> Н	RL F	ore	st Cl	MS,	, Coi	rine	Lan	d Co	over	CLN	1S, F	IRL	Wat	ter 8	& W	etne	ess (CLMS	5			
7.2 Initial development of algorithms, using existing dataset																														
7.3 (Train) Drone flight in PUC3																														
7.4 Refining algorithms																														
7.5 (Validation) Drone flight in PUC3																														
7.6 Bundle results																														

1.1.1.2 VINEYARD

BUNDLE	1.	Cro	p gro	wth a	and c	devel	opm	ent r	nonit	orin	g																			
			20)22								20)23											20	24					
	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
TASK/SUBTASK	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1.1. Performing RGB and																														
multiespectral flights on training	Dat	aset	t ge	nera	ted	dur	ing	proj	ect l	ife																				
and testing plots	in A	lba	cete	e pro	vinc	e																								
1.2. Performing field visits for																														
phenology monitoring																														
1.3. Processing and obtaining																														
geomatic products																														
1.4. Developing bundle.																														
1.5. Final product for crop growth																														
and development assessment																														
1.6. Testing crop growth and																														
development monitoring at pilot																														
case																														
1.7. Improving bundle if it is																														
necessary																														

BUNDLE	3.	Vine	yard	wat	er str	ress	due t	to dro	ough	t																				
			20	22								20)23											20)24					
	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
TASK/SUBTASK	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
3.1. Performing RGB, multiespectral, and thermal flights on training and testing plots		aset					ing	proj	ect	life																				
3.2. Performing field measurements of stomatal conductance																														
3.3. Processing and obtaining geomatic products																														
3.4 Developing bundle																														
3.5 Final product for water stress assessment																														
3.6 Testing water stress at pilot case																														
3.7 Improving bundle if it is necessary																														

1.1.2 GREECE PILOT CASES

1.1.2.1 LIVESTOCK

BUNDLE	1. Li	vesto	ock n	nana	geme	ent (h	ierd)	and	mon	itori	ng (ir	ndivio	dual	anim	al)															
			20	22								20	23											20	24					
	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	З	4	5	6	7	8	9	10	11	12
TASK/SUBTASK	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1.1 Experiment design -																														
Investigate existing datasets																														
1.2 Investigate and implement different computer vision models in public datasets in order to define the dataset requirement.																														
1.3 Initial dataset creation from Pilot.																														
 1.4 Initial development of computer vision algorithms and/or object detection neural networks, using existing dataset 																														
1.5 (Train) Drone flight in PUC2																														
1.6 Refining algorithms																														
1.7 (Validation) Drone flight in PUC2																														
1.8 Bundle results																														

BUNDLE	2. Ai	nima	ls he	alth																										
			20	22								20	23											20)24					
	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
TASK/SUBTASK	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
2.1 Experiment design - Investigate existing datasets																														
2.2 Investigate and implement different computer vision models in public datasets in order to define the dataset requirement.																														
2.3 Initial dataset creation from Pilot.																														
 2.4 Initial development of computer vision algorithms and/or object detection neural networks, using existing dataset 																														
2.5 (Train) Drone flight in PUC2 / or Stable camera.																														
2.6 Refining algorithms																														
2.7 (Validation) Drone flight in PUC2 / or Stable camera																														
2.8 Bundle results																														

1.1.2.2 PASTURE

BUNDLE	3. N	1onit	oring	g flora	a at I	nigh-	altitu	ıde g	razin	g are	eas fo	or sea	isona	al ani	mal	feedi	ng													
			20)22								20	23											20	24					
	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
TASK/SUBTASK	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
3.1 Pilot case images of high																														
altitude pasture providing																														
3.2 Devolping bundle																														
3.3 Flora surveillance at pilot case																														
3.4 Improving bundle if it is																														
necessary																														

1.1.3 SPANISH PILOT CASES

1.1.3.1 FOREST

BUNDLE	1. C	ontir	nuity	ofve	egeta	tion																								
			20)22								20	23											20	24					
	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
TASK/SUBTASK	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1.1 Initial dataset creation																														
1.2 Initial development of algorithms, using existing dataset																														
1.3 (Train) Drone flight in PUC1																														
1.4 Refining algorithms																														
1.5 (Validation) Drone flight in																														
PUC1																														
1.6 Bundle results																														

BUNDLE	3. C	hara	cteria	zatio	n of	urbar	n-fore	est in	terfa	ace. A	Acces	is for	firef	ighte	ers, e	vacu	ation	, and	l bior	nass										
			20)22								20	23											20	24					
	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
TASK/SUBTASK	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
3.1 Initial dataset creation																														
3.2 Initial development of algorithms, using existing dataset																														
3.3 (Train) Drone flight in PUC1																														
3.4 Refining algorithms																														
3.5 (Validation) Drone flight in PUC1																														
3.6 Bundle results																														

BUNDLE	4. H	ot sp	oot id	lentif	ficatio	on at	the	begir	nning	; of w	vildfi	re																		
			20)22								20)23											20	24					
	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
TASK/SUBTASK	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
4.1 Initial dataset creation																														
4.2 Initial development of algorithms, using existing dataset																														
4.3 (Train) Drone flight in PUC1																														
4.4 Refining algorithms																														
4.5 (Validation) Drone flight in PUC1																														
4.6 Bundle results																														

1.1.3.2 LIVESTOCK

BUNDLE	1. C	ollec	ting p	barar	nete	rs rel	ated	to th	e he	alth	ands	stress	s of I	ivest	ock															
			20	22								20	23											20	24					
	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
TASK/SUBTASK	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1.1 First livestock collar prototype																														
1.2 Initial tests with collar																														
1.3 Final livestock collar prototype																														
1.4 (Train) Data collection																														
1.5 Algorithm creation																														
1.6 (Validation) Data collection																														
1.7 Bundle results																														

BUNDLE	2. L	amei	ness	dete	ctior	n in c	ows																							
			20	22								20	23											20	24					
	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
TASK/SUBTASK	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
2.1 Experiment design -																														
Investigate existing datasets																														
2.2 Investigate and implement																														
different computer vision models																														
in public datasets in order to																														
define the dataset requirement.																														
2.3 Initial dataset creation from																														
Pilot.																														
2.4 Initial development of																														
computer vision algorithms																														
and/or object detection neural																														
networks, using existing dataset																														
2.5 (Train) Drone flight in PUC1																														
2.6 Refining algorithms																														
2.7 (Validation) Drone flight in																														
PUC1																														
2.8 Bundle results																														

1.1.3.3 VINEYARD

BUNDLE	1. Cı	rop gi	rowt	h an	d dev	velop	mer	t mc	nitor	ing.																				
			20	22								20	23											20	24					
	7	8	9	10	11	12	1	2	З	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
TASK/SUBTASK	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1.1. Performing RGB and																														
multiespectral flights on training	Dat	aset	gei	nera	ted	duri	ing	proj	ect l	ife																				.
and testing plots	in A	lbac	ete	pro	vinc	e																								.
1.2. Performing field visits for																														
phenology monitoring																														.
1.3. Processing and obtaining																														
geomatic products																														
1.4. Developing bundle.																														
1.5. Final product for crop growth																														
and development assessment																														.
1.6. Testing crop growth and																														.
development monitoring at pilot																														.
case																														
1.7. Improving bundle if it is																														
necessary																														

BUNDLE	2. V	ineya	ırd w	ater	stres	s du	e to (drou	ght.																					
			20)22								20	23											20	24					
	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	м	4	5	6	7	8	9	10	11	12
TASK/SUBTASK	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
2.1. Performing RGB, multiespectral, and thermal flights on training and testing plots				nera pro			ing	proj	ect l	ife																				
2.2. Performing field measurements of stomatal conductance																														
2.3. Processing and obtaining geomatic products																														
2.4 Developing bundle																														ļ
2.5 Final product for water stress assessment																														
2.6 Testing water stress at pilot case																														
2.7 Improving bundle if it is necessary																														

BUNDLE	4. S	oil zc	onific	atior	ı																									
			20)22								20	23											20	24					
	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
TASK/SUBTASK	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
4.1 Historical satellite images analasying at pilot case plot	dui Alb Use	ring ace e of	t gei proj te pi avai atioi	iect rovi labl	life i nce. e	in																								
4.2 Crop vigour zonification																														
4.3 Plot zonification																														
4.4 Performing soil samples at pilot case																														

The pilot plan of different bundles consists different action steps of the workflow in order to follow implementation tasks/subtasks. Action steps of the workflow are divided into three groups according to the specification of execution:

- Tasks, which will be developed in the office (Grey colour in Gantt Diagram)
- Tasks, which will be developed on the ground (Green colour in Gantt Diagram)
- Mixed tasks, which will be developed both on the ground and in the office (Soft Grreen colour in Gantt Diagram)

4 EVALUATION METHODOLOGY

All pilots will follow a similar evaluation methodology. To unify the results of each pilot and make them comparable, a standard for the evaluation has to be put into place. To ensure the intercoder reliability, questionnaires and observers will be trained for the job at each pilot action and will have a briefing from technical as well as operational side to understand what is going on. Especially for the observations, this is necessary to extract relevant data. The focus of the evaluation will be on the users and the relevance of the system to their needs and jobs.

4.1 Background for methodology

For the outcome of CHAMELEON, it is of interest to know if the system delivers an added value to the users. Also, the development needs to be supported by users to provide the necessary context for developments as well as to have a reality check against the assumptions from tertiary stakeholders to the main observation subject. This means the perspective of academics and coder have to stand against the judgement of practitioners. With the feedback of practitioners, the development can proceed to the next step and adjust features of the system.

To evaluate if the users are satisfied with the development and find a use for the new technology over different places and use cases, a standardized questionnaire can support to normalize the feedback and provide a response to the consortium. This response has to be supported with context. At one level of response the consortium gets the feedback that the technology is acceptable and useful with a comparable score for each pilot action. At another level, contextual feedback will provide the information to the developer for each pilot action what needs to be improved, developed or dismissed.

In theory, there are some approaches to systematize the collection of such responses and to classify the relevant information. As state of the art, the technology acceptance model has formed over the years a decent approach with theoretical foundation and elaborated models and discussions in the scientific community. With the TAM3 (Venkatesh & Bala, 2008) a universal and appropriate model for CHAMELEON is already existing as seen in Figure 3.

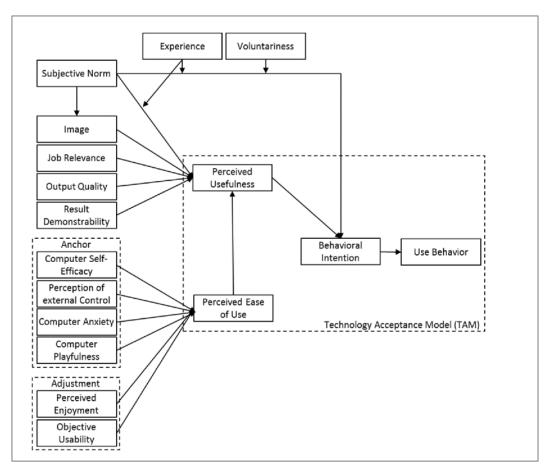
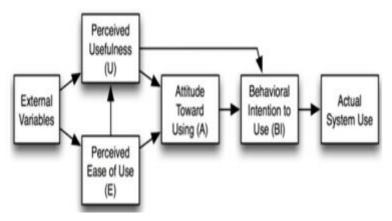



Figure 3 TAM3 Model

The TAM3 is more elaborated in the subjective norms and combines the experiences and the voluntariness into the behavioural intention. By this, intervening factors are declared and can be taken into account. Three measurements lead to the approximation of system usage: Perceived usefulness, perceived ease of use and the behavioural intention. The perceived usefulness describes the a very personal motivated impression of the system to the user on operational means. The perceived ease of use is providing a psychological and social background to the system usage that is affecting motivation. The behavioural intention is resulting from the perceived usefulness and the attitude toward using the system. (Alharbi & Drew, 2014)

Additional to the TAM approach, the idea of socio-technical systems (STS) is necessary to provide more context to the feedback. By Socio-technical systems, it is meant to widen the scope of development from the principle manufacturing process to the work process of the user, the social interactions in the field of work and the interrelations between the social and the technical component.(Clancey, 1992) The integration of technology into the habitus of the users – not just the legislative processes or working routines, but also into the social meaning and personal values of jobs and tasks – provides a potentially higher acceptance of technology. Following the ease of use from TAM, this means, the final actual system use is higher in probability. Which could be considered a success for CHAMELEON. For the evaluation, CHAMELEON will therefore focus on this holistic perspective of the system usage: Technical – Operational – Societal/psychological

Within the methodological discussion, there are standardized questionnaires available that allow also a comparison between different projects and developments from other projects and with a scientific background. This will be taken into account (e.g. SUS, USE scale, TC scale)

Next to standardized questionnaires, there are different assessment methodologies for gathering data that provide – in relation to the available TRL - an approved approach. As baseline for the assessments, CHAMELEON will follow the guideline "The art and joy of user integration in AAL projects" (AAL, 2015)

4.2 Evaluation branches

4.2.1 Technical

The technical evaluation will consist of a pre- check for each pilot action if all functionalities are according to the requirements. KPIs are defined by an operationalisation of the use case. For each use case, a defined KPI will have to be met. Within the pre- check of the functionalities, the technical readiness for the plot action is checked. This result will influence the methodological aspect of data collection for the pilot action.

4.2.2 Operational (T6.3)

The operational aspects will be checked during the pilot action. Tasks will be defined for each pilot with a scale how much of the task could be accomplished with the CHAMELEON system. KPIs will mark the milestones of tasks.

Within Task 6.3 the operational tasks will be collected and systematically designed as PROCESS MODELS with indicators, when which process step is met. This will then be the foundation for the pilot action evaluation.

4.2.3 Societal/psychological (T6.4)

Following the subjective norm, as seen in Figure 3, for each pilot action, a questionnaire for the states and traits will be handed over to the users. This should provide a base for the interpretation of the data collected after the pilot action. Also, the process models will help in a SOCIAL NETWORK ANALYSIS of the interaction of different working groups/Stakeholder/users with the technology and show up where more training needs to be done to allow a seamless integration of a CHAMELEON system into daily routines. Within Task 6.4 all necessary questionnaires and interview guides will be put together and executed during the pilot actions.

4.3 Evaluation "Development Monitoring"

During the development of the Pilot Case there will be bi-monthly meetings to evaluate the advance of the bundles advances according to Gantt Diagram proposal. The evaluation will be based on a document containing information about the advances of the pilot according to the tasks and subtasks on which the Pilot Case has been split. This document will be completed on a monthly basis and discussed during the bi-monthly meetings.

The model of the document for monthly evaluation is in Annex 1.

This model will be prepared for bundle developers for each bi-monthly meeting in order to evaluate the advances on the workplan and foreseen certain activities to solve potential deviations and delays.

5 References

- Alharbi, S., & Drew, S. (2014). Using the Technology Acceptance Model in Understanding Academics' Behavioural Intention to Use Learning Management Systems. *International Journal of Advanced Computer Science and Applications, 5*(1). https://doi.org/10.14569/IJACSA.2014.050120
- Clancey, W. (1992). *Guidon-Manage revisited: A socio-technical systems approach.* 4. https://doi.org/10.1007/3-540-55606-0 3
- Venkatesh, V., & Bala, H. (2008). Technology Acceptance Model 3 and a Research Agenda on Interventions. *Decision Sciences*, 39(2), 273–315. https://doi.org/10.1111/j.1540-5915.2008.00192.x

6 Annex 1. Advance evaluation

Pilot case						
Bundle						
Task		State ⁽¹⁾	Achieved on time ⁽²⁾	Shared ⁽³⁾	Feedback (4)	Considerations (5)

Date of	of cor	npletio	n:
---------	--------	---------	----

	Considerations to overcome deviations and delays
Operator's need	

commens	
Conflicts	
Systems operating	
Operator's need	

Individual test needed?	
Partners involved	
Feedback	

(1) Not initiated yet / Initiated / Advanced / Finished

(2) Not finished yet / Yes

(3) List the actors who have taken part on the action and the information shared with them

(4) List the actors who have feedbacked and their contributions

(5) Any consideration

Copyright © 2022. All rights reserved.

Contact:

Project Coordinator: Pantelis Velanas	pvelanas@accelligence.tech
Acceligence Ltd.	

Disclaimer

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Executive Agency. Neither the European Union nor the European Research Executive Agency can be held responsible for them.

